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The swash zone is that part of a beach over which the instantaneous shoreline moves 
back and forth as waves meet the shore. This zone is discussed using the nonlinear 
shallow water equations which are appropriate for gently sloping beaches. A weakly 
three-dimensional extension of the two-dimensional solution by Carrier & Greenspan 
(1958) of the shallow water equations for a wave reflecting on an inclined plane beach 
is developed and used to illustrate the ideas. Thereafter attention is given to integrated 
and averaged quantities. The mean shoreline might be defined in several ways, but for 
modelling purposes we find the lower boundary of the swash zone to be more useful. 
A set of equations obtained by integrating across the swash zone is investigated as 
a model for use as an alternative boundary condition for wave-resolving studies. 
Comparison with sample numerical computations illustrates that they are effective in 
modelling the dynamics of the swash zone and that a reasonable representation of 
swash zone flows may be obtained from the integrated variables. The longshore flow 
of water in the swash zone is in many ways similar to the Stokes’ drift of propagating 
water waves. Further averaging is made over short waves to obtain results suitable as 
boundary conditions for longer period motions including the effect of incident short 
waves. In order to clearly present the work a few simplifications are made. The main 
result is that in addition to the kinematic type of boundary condition that occurs on 
a simple, e.g. rigid, boundary two further conditions are found in order that both the 
changing position of the swash zone boundary and the longshore flow in the swash 
zone may be determined. Models of the short waves both outside and inside the 
swash zone are needed to complete a full wave-averaged model; only brief indication 
is given of such modelling. 

1. Introduction 
The swash zone, i.e. the area of the beach where the waves move the instantaneous 

shoreline back and forth, is an important, yet little studied, part of the coast. Most 
applications involving waves in the coastal zone use averaging over many waves, 
and difficulties associated with averaging hydrodynamic properties in the swash zone 
are becoming a matter of concern. Many of the available models for the dynamics 
of waves on shallow water are based on equations for depth-integrated and wave- 
averaged variables (Mei 1983). Often these models are used to investigate flow 
properties up to the shoreline e.g. analysis of longshore currents (Van Dongeren et 
al. 1994) and their stability (Dodd 1994). In this context, the boundary conditions 

t The author to whom communications should be addressed. 
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associated with the shoreline need to be properly defined. This involves averaging 
flow properties where a free moving boundary meets a rigid boundary. 

The flow properties in the swash zone are of importance for coastal erosion 
and accretion, for groundwater flow and flood protection. Also swash motion is 
of particular relevance because the sediment processes in this zone provide the 
important boundary condition for the beach evolution. According to some recent 
studies, longshore sediment transport is closely related to the hydrodynamic motion 
at the two boundaries of the surf zone i.e. at the breaking point and inside the swash 
zone. Sediment transport in the swash zone may be considered as a stirring of the 
sediments by energetic swash and a net transport due to mean longshore currents 
(Thornton & Abdelrahman 1991). Analysis of the swash zone dynamics is linked, 
and often confused, with the analysis of the run-up. Predicting the maximal excursion 
of water on a beach, given the frequency and amplitude of the incident wave train 
at some distance from the shore, is just one of the goals for research in the field of 
coastal engineering. 

A different perspective is developing for which a more complete analysis of the 
swash zone motion involves understanding of all aspects of water flow motion in 
this region where the waterline oscillates, the run-up being just one consequence of 
those motions. In particular, correct estimates of mass and momentum fluxes inside 
the swash zone are relevant to the longshore sediment transport. These fluxes are 
needed as the sum of contributions coming from the motion of waves whose period 
may range from typical periods of short gravity waves (a few seconds), to much 
larger periods associated with low-frequency waves (a few minutes) or even with tidal 
fluctuations (a few hours). A clear concept of mean flow is essential in analysing the 
effect of all these contributions. 

There are strong similarities between the swash zone and the zone between the 
horizontal planes of the crests and troughs of water waves. For progressing waves 
the average horizontal flow in that zone is markedly different from the average flow 
below, and gives the entire contribution to the Stokes’ drift mass flow when the waves 
are appropriately defined and analysed from an Eulerian viewpoint. For a thorough 
investigation of mass and momentum transfer at the free surface between short- and 
large-time-scale motions see Hasselmann (1971). One of the main findings is that the 
above mass transport is relevant to analysis of the interactions between the wave 
fluctuating field and a mean flow. It is essential to include the divergence of the mass 
transport term in the kinematic boundary condition for the mean flow (Hasselmann 
1971). Similar boundary conditions for the mean flow motion need to be determined 
at the mean shoreline. In this case a corresponding contribution due to a mean 
longshore drift velocity needs to be considered. 

Here we focus attention on some problems related to the definition of run-up, 
set-up, the mean shoreline and the averaging of flow properties when a moving 
boundary (the free surface) meets a fixed boundary (the beach). This study takes the 
nonlinear shallow water equations to be a suitable model for the swash zone and the 
nearby region on a beach of gentle slope. A number of studies, e.g. Packwood (1980), 
Kobayashi, Otta & Roy (1987) and Watson, Barnes & Peregrine (1994) have made 
comparisons of the solutions of these equations with experiments with encouraging 
results. 

Carrier & Greenspan (1958) give an analytical solution for the shallow water motion 
of temporally periodic, finite-amplitude, non-breaking standing waves on a beach of 
constant slope. It is still one of the few analytic solutions available, together with that 
discovered by Shen & Meyer (1963) for run-up due to a bore. In $2 we analyse some 
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properties of the analytical solution of the nonlinear shallow water equations given 
by Carrier & Greenspan (1958). We also show that an analytic solution is possible 
for a weakly three-dimensional extension of their solution which builds on the work 
of Ryrie (1983). Results for some flow properties are given in the form of contour 
plots. In $3 some possible definitions of mean shoreline are given, and various flow 
properties are discussed. In $4 a model for integrated flow properties in the swash 
zone is described. This model enables computation of integral flow properties by 
using local flow quantities at the seaward limit of the swash zone. In $5 we discuss 
the application of the model equations to some test cases. Time series of the integral 
properties adopted to model the swash zone flow are illustrated and discussed. In 
$6 we show an example of how swash flow can be predicted from properties at the 
seaward limit of the swash zone. 

The above-mentioned topics are all steps on the way to the main aim of this paper 
which is to derive swash zone boundary conditions suitable for wave-averaged models 
of the near-coastal area. We need to assume that the waves incident at the edge of 
the swash zone are divisible into long and short waves, and we average over the 
latter. The derivation of boundary conditions in $7 makes no further assumptions. 
Although we give a brief discussion in $8 of some of the averaged terms, using the 
full numerical solution, the present work is limited to providing the foundation on 
which further closure hypotheses can be made for practical implementations of surf 
and swash zone modelling. 

2. An analytic solution of the shallow water equations 
In this section we introduce the basic equations used to describe the flow dynamics 

near the shore. We also discuss an analytic solution of the equations valid for weakly 
three-dimensional flow conditions. 

Motion of water waves near the shoreline on a gently sloping beach is described by 
many authors using various hydrodynamical equations : linear and nonlinear shallow 
water equations, Boussinesq equations and various related approximations. Stoker 
(1947) and Whitham (1979) describe exact solutions of the linearized shallow water 
equations on beaches of uniform slope for certain beach angles initially discovered 
by Hanson (1926). A long-wave approximation for the full equations of motion 
gives as the leading terms (see Peregrine 1972) the nonlinear shallow water equations 
(NLSWE). These equations are obtained by assuming that vertical accelerations of 
the water, or those normal to the beach, are negligible compared with gravity. Since 
no dispersive terms are included in the nonlinear shallow water equations, solutions 
for sufficiently steep waves travelling shoreward continually steepen and a bore, or 
jump, is inserted to represent breaking as the gradients become singular. Shallow 
water equations are used when motion is continuous, but across the discontinuity of 
height and velocity at the bore, or jump, mass, and momentum must be conserved 
(Hibberd & Peregrine 1979). 

We introduce basic definitions, see figure 1, choosing the still water level to be z = 0 
and the total water depth 

(2.1) 

where z = -h(x) is the seabed, z = q(x, y ,  t )  is the position of the free surface and y is 
in the longshore direction. The onshore and longshore velocity components, u(x, y, t )  
and v ( x ,  y ,  t )  are the depth-independent horizontal velocities used in the nonlinear 
shallow water equations (NLSWE). 

4x3 Y ,  t )  = h(x)  + dx, Y ,  t )  
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FIGURE 1. Surface definition in the vicinity of the swash zone. 

For a plane beach the equations without bottom friction can be put in a simple 
dimensionless form with no explicit dependence on the beach slope a (Meyer & 
Taylor 1972; Hibberd & Peregrine 1979). The dimensional set of equations is 

die + (d*u*),. + (d*V*),* = 0, 
U; + u*u:. + v*u;. + gdl. = -ga, 

v~*. + u * v ~ .  + v*v;. + gd;. = 0. 

( 2 . 2 ~ )  
(2.2b) 

(2.2C) 

Dimensionless variables chosen to eliminate the beach slope a from the equations are 

112 

t o =  (t) , uo = (gloa)”2 

( 2 . 3 ~ )  

(2.3b) 

( 2 . 3 ~ )  

where lo is a reference length which can be specified according to the particular 
problem under investigation. The equations become 

dt + (du)x + (do), = 0, 
ut + UU, + V U ~  + d, = -1, 
ot + U V ,  + V V ,  + d, = 0. 

( 2 . 4 ~ )  
(2.4b) 
( 2 . 4 ~ )  

Friction terms are not included for the analysis and most of the numerical modelling. 
Even at laboratory scale they are of secondary importance if beach slope is not too 
small. Watson et al. (1994) give a quantitative estimate of their importance. However, 
the energy dissipation of bores is included in the modelling as discontinuities. 

Equations (2.4) can be further simplified by approximating for waves incident at 
small angle 8 to the beach normal (Ryrie 1983). Since waves approaching a beach 
from deep water are, in most circumstances, refracted toward the shore so that 6 is 
small, this restriction is not severe for a single incident wave train. We introduce a 
pseudotime t‘ and a small parameter c such that 

t 

t = t - c y .  (2.5) 
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With this as the only y-dependence, it implies we are assuming that the wave pattern 
has a longshore phase velocity of l/e. For example, this can occur for a regular 
train of waves incident towards the shore at an angle 8 to the shore normal, with an 
offshore velocity c, where e = sinO/c. This approach can be extended to any beach 
that like the plane beach has uniform topography in the longshore direction. 

For a weakly three-dimensional flow the additional scaling 

on substitution into the NLSWE (2.4), neglecting O(e2)  terms and dropping primes, 
gives the set of equations: 

(2 .7~)  
(2.7b) 
(2.7~) 

The last of the above set of hyperbolic equations is now decoupled from the first 
two. The v-component of the velocity does not appear in (2.7a,b) (‘onshore problem’) 
and a solution for (2.7~) (‘longshore problem’) is found once d and u are known. 
Characteristic directions in the (x,t)-plane for the system (2.7) are given for the 
onshore and longshore problem respectively by 

dx dx 
- = u f c  and - = u. 
dt dt 

Equations (2.7) can be expressed in characteristic form with the Riemann invariants 
a, p and y :  

at + (u + c)ax = 0, 
pt + (u - c)a, = 0, 

Y t  + UYX = 0, 

where the Riemann invariants are defined as follows: 

a = 2c + u + t, 
p = 2 c - u - t ,  

y = - iu2 - d - x  = v - T~ 1 2  -q .  

( 2 . 9 ~ )  
(2.9b) 
(2 .9~)  

(2.10~) 
(2.1 Ob) 
(2.10c) 

Carrier & Greenspan (1958) used a hodograph transformation in solving the 
onshore problem: 

(2.11) 63 1 = a - p  = 2 ( u + t ) ,  0 = a + p  = 4 c ,  u ( 0 , l )  = -. 
0 

The characteristic coordinates (0, A) are particularly effective for the moving shoreline 
since the (i = 0 contour maps the moving shoreline d = c = 0. We can also see that 
G is a space-like coordinate and 1 is a time-like coordinate (e.g. see figure 2a): in the 
limit of either small wave amplitude or large values of cr a simple relationship holds: 

(2.12) (x, t ) ”  ( -1602,  1 $2). 

Combining the equations for the onshore problem gives a linear equation in 4 :  
( 4 ) u  - 4 n n  = 0. (2.13) 
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FIGURE 2. Superposition of two waves. Contour plots of: ( a )  the (o,I)-coordinates in the (x, t)-plane. 
Lines of constant 1 run from left to right whilst lines of constant CT run from top to bottom. ( b )  The 
free surface elevation q,  ( c )  the onshore velocity u and (d) the longshore velocity v .  Dimensionless 
amplitudes and frequencies are Al = 1.5, w1 = 0.5 and A2 = 0.5, 02 = 1.2 respectively. 
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The linearity of the above equation means its solution can be given as a sum of 
Fourier modes : 

N 

4(a,A)=):AkJ0(wka)sin9k9 Qk =wkA+vk (2.14) 

where Jo  is the Bessel function of the first kind and which give explicit expressions 
for x,t,q,u once (2.9) are integrated (Carrier & Greenspan 1958; Synolakis 1987): 

k=O 

1 1 2  1 2  x(a,A) = - 160 - j u  , 
t(a,il) = ;A - u, 

q ( 0 , A )  = i q 5 A  - zu . 1 1 2  

(2.15~) 
(2.15b) 
(2.154 

Note that Wk as defined in (2.14) is twice the frequency of waves where they are h e a r  
because of the factor 2 in the definition of A, equation (2.11). 

A two-mode example is illustrated in figure 2. However, not all the solutions can 
be transformed back to the (x,t)-plane. This problem occurs when the Jacobian of 
the transformation (x, t )  -+ (a, A) vanishes. The transformation is only single valued 
when 

N 

x A k W : C O S $ k  < 1. (2.16) 

Figure 2 shows an example of a two-mode solution obtained by superposing two 
modes for which condition (2.16) is satisfied. In order to show details, the solution is 
given for time shorter than the modulation period. 

For a single-mode solution (2.14) is 4(a,A) = AJo(wa)sin9, 9 = wil + w and 
equation (2.16) reduces to the simple condition Aw3 d 1. This corresponds to a wave 
of amplitude A and frequency &o travelling shoreward and being reflected out to 
sea generating a standing wave. This type of solution has been used in the past 
when analysing the dynamics of water waves approaching a coast or a continental 
shelf. Carrier (1966) matches both nonlinear shallow water theory and linear theory 
for deeper water to obtain a prediction of run-up for incident linear waves; also 
Keller (1963) and Carrier (1971) use the same solution when studying the dynamics 
of tsunamis. 

Since the equation for the longshore problem is decoupled we can formally integrate 
equation (2.9~) once the Riemann invariant y is substituted by its explicit expression: 

0 = y t  + uy, = 211XU - U,XA + u(v,tn - UAt,) - (qnx, - quxn). (2.17) 

k=O 

After some algebra the equation can be rearranged to give 

(f-h) a (2u;-s) 4 a - f  (4,,--> a (f-4vu) =o.  (2.18) 

A solution valid for any 4 is 

and setting const. = 0 we get 

ZI = $4A + const. 

N 

u == AkWkJO(Wka) cos &. 
k=O 

(2.19) 

(2.20) 

Contour plots of the free surface elevation and velocity components help visualize 



248 M. Brocchini and D. H .  Peregrine 

the behaviour of the solution, see figures 2 and 3 for superposition of two modes, 
and for a single mode respectively. The multimodal solution is less general than it 
looks since it still has the requirement of constant longshore phase velocity. In that 
respect it could be useful for modelling the waves generated by a ship moving at 
constant speed parallel to the shoreline, an important consideration for canals, rivers 
and navigation channels where shore erosion is often a major problem. 

For all the flow properties of the single-mode solution shown in figure 3 there is a 
cell-structured pattern. Cells are confined by surface contours of zero level; they also 
have different sizes and shapes. For all of them the largest values are reached within 
the most onshore cell. The particular characteristic of the contour structure for u is 
that it has an antisymmetric cellular pattern within the period. We can therefore state 
a priori that its mean value over a wave period is zero at each x = const. position. 
This is not true for either the free surface elevation or the longshore velocity. They 
have similar cell patterns and, for both of them, time averaging over a wave period 
results in a non-zero contribution. 

3. The mean shorelines, and longshore flow 
We now focus on the analysis of the flow near to the shoreline boundary of the 

domain where the single-mode solution obtained in the previous section is defined. 
In particular we describe swash zone flows with particular emphasis on mean flow 
properties, and note that a mean shoreline boundary is not uniquely defined. From 
analysis of available literature it seems clear that there is no unique definition for 
the mean shoreline, e.g. at one extreme Nielsen (1989) defines the mean shoreline as 
the maximum of the run-up. This is the result obtained from averaging the depth 
over the phase. On the other hand the mean position of the shoreline is an obvious 
definition. 

We give several possible definitions of mean shoreline, each of a different character. 
The definitions are based either on kinematic flow properties (1.e. time or phase 
average of the waterline position), or on dynamic flow properties of the swash zone 
(i.e. involving mass or momentum fluxes) and a graphical representation of them is 
given in figure 4. 

We illustrate some possible definitions by using the Carrier & Greenspan solution. 
Equations (2.14) and (2.15) give the single-mode solution 

(3.lb) 

The moving shoreline is defined at c = 0 and hence given by 

(3.2a) x, = a ~ o  cos 9 - 
t, = (I + A C O ~  sin 9) . (3.2b) 

The maximum and minimum positions of the shoreline are symmetric with respect 
to the still water level 

1 2 4  o sin2 9 , 

(3.3) 
1 

XSMj" = - i A o  , XSMax = TAU = XI. 

Therefore x1 represents the definition of Nielsen (1989). For this shoreline the mean 
water depth is zero. 
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FIGURE 3. Contour lines of: (a) the free surface elevation, ( b )  the onshore velocity component u 
and (c) the longshore velocity component v in the (x, t)-plane. ( d )  Graphic image of the Carrier & 
Greenspan wave on the beach in dimensionless, scaled, coordinates. Dimensionless wave amplitude 
A = 1 and dimensionless wave frequency w = 1. 
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FIGURE 4. Some definitions for a mean shoreline for the Carrier & Greenspan solution with 
A = w = 1: xo = location of the still water level; x1 = location of the wave maximum run up; 
x2 = median shoreline i.e. location where wet and dry alternates for equal time during a wave cycle; 
x3 = mean shoreline i.e. time average of the actual shoreline x,; x4 = mean shoreline based on 
considerations on the longshore mass flux. 

The obvious definition of mean shoreline is based on the phase average of the 
waterline position, 

(i Aw cos 8 - $A2w4 sin 9) dt, (3.4) 

where (.) is a wave average operator. At the waterline (T = 0 and therefore the time 
coordinate t = t ,  only depends on 2 and a change of variable t + 1 gives 

x3 = - ( $ A m  cos 9 - iA2w4 sin 9) (Am3 cos 9 + 1) d/Z = &A2w4. (3.5) 

Two other possible positions for a mean shoreline are shown. One is for the mean 
(median) shoreline x2 such that wet and dry alternate for equal time during a wave 
cycle: 

( 3 . 6 ~ )  x2 = ~ A o c 0 s 8 ~  - 8A w sin Q2 , 
where 9 2  satisfies 

271 /"I2 '"  -11/2w 

1 2 4  2 

2041 + A W ~  cos 8 2 )  = f ( 2 n  + 1 ) ~  n E IN, (3.6b) 

and the other for the shoreline x4 such that the longshore mass flux in the swash 
zone is equal shoreward and landward of it: 

( u d )  dx = l:I4(vd) dx. (3.7) 

It can be shown that the following holds: 

XI > x2 ,x3 ,x4 ; x2 > x4, V A,w such that 0 d Am3 d 1. (3.8) 

In fact the function (vd)  reaches its maximum value near the middle of the swash but 
seaward of the still water level position, i.e. - A o / 4  d x < 0 (see figure 6). 

Before considering averaging further we wish to clarify the relationships between 
the flow properties obtained from the dimensionless solution and their dimensional 
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Dimensionless representation 

w = l  A = l  

Solution q5(a,,?) = AJo(a) sin 1 q5(o,l) = &(ma) sin w l  

Length scale 4ga lo = - 
wa2 

113 
4A' A'w'' 

A = - = - Relation to run-up amplitude 
a10 gC2 

TAB E 1. Summary of solution form, length scale and complementary dimensionless variable for th 
two dimensionless representations of a single-Fourier-component Carrier & Greenspan solution. 

counterparts. The single-mode solution is formally characterized by the three degrees 
of freedom associated with the dimensionless wave amplitude A, the dimensionless 
wave frequency o and the phase shift y.  The last variable can be set to zero when 
dealing with a single-wave mode by suitable choice of the time origin. Either of 
the two remaining parameters, A and o, may be set equal to unity, without loss 
of generality, by suitable choice of the length scale 10 used to make the equations 
(2.4) dimensionless, e.g. Carrier & Greenspan (1958) set o = 1. Table 1 shows the 
relationship between the two natural choices. 

From (3.lb) and (2.3~) the dimensional frequency of any given wave is 

On the other hand the dimensional amplitude A' can be linked to the dimensionless 
parameters by inspection of the run-up height from equation (3.3) : 

- < h < ~ A C O  -bAwdo < h* < dAwdo. (3.10) 

We can also link the dimensionless parameters to the deep water dimensional ampli- 
tude ALeep. The run-up height can be obtained from the deep water amplitude through 
an amplification factor characteristic of linear small-amplitude theory (Keller 1961 ; 
Meyer & Taylor 1972): 

(3.11) 

As a consequence of equation (3.10) we choose to define the dimensional amplitude 
as the run-up amplitude: 

A* = ~ A W C ~ O .  (3.12) 
Requiring either o = 1 or A = 1 the length scale lo is set from equations (3.9) and 
(3.12) and its values are reported in table 1. 

It is evident that the breaking condition expressed in dimensionless variables from 
(2.16) becomes in dimensional variables and for a single-mode solution 

(3.13) 

where the breaking parameter B is widely used in coastal engineering to assess 
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both the incipient wave breaking over a slope and also to distinguish between the 
qualitatively different types of breaking (see Galvin 1972). For many of the figures 
we choose w = 1, but report analytical results with general A and w. 

Time averaging of flow properties is rather involved for the Carrier & Greenspan 
solution because of difficulties in relating (x, t )  and (0, A). Let . , -  

I 

T t+T 
G ( x , t )  dt = - lim H ( x , t )  (3.14) 

be the time average of G(x, t )  = g(o, 12) where 

H(x, t )  = G ( x , s )  ds. (3.15) 

To evaluate this type of average which is based on time integration on curves of 
x = const. we solve the following partial differential equation along the curves 
x = const. in the (o,A)-plane: 

1 

- = G(x, t) = g(o, A). 
aH 
at 

But for constant x we have 

(3.16) 

(3.17) 

From these equations a set of two ordinary differential equations for (G(x,t)) and o 
is obtained: 

d(G(x,t)) - - -1img(o,~)  1 . [$ (-”/”) +a] 
(3.18) 

a2 Z’ 1 dA T t+T 

*=-@/ax dA 

The first equation is the total derivative of (G(x,t)) in terms of G(x,t) while the 
second states that we are integrating along curves where x = const. This method is 
used to compute the time average of velocities and mass fluxes. 

A first interesting result is obtained for the mean longshore velocity: a mean drift is 
associated with the swash zone width while the average is identically zero outside the 
swash zone (see figure 5). This closely resembles what happens for the Stokes’ drift 
where a mass flux is associated with the motion of the free surface, with zero mass 
flux below the trough level, and hence is expected. However a more interesting result 
relates to the mean longshore mass flux (see figure 6). Correlation between solutions 
for the total water depth and the longshore velocity is such that the mean longshore 
mass flux is non-zero for a wide range of the solution domain. Even though the 
mean longshore mass flux is an order of magnitude smaller than the mean longshore 
velocity, mass transport effects are also non-negligible outside the swash zone. 

At any point in the swash zone the mean water depth ( d )  is non-zero except at the 
upper limit. In figure 7 the mean free surface elevation and the position of the mean 
shoreline x3 = A2w4/16 are shown. The mean water depth at this shoreline, x3, is 
shown in figure 8 as a function of amplitude A. Note that even if there is no breaking 
a set-up still occurs at the antinode of this standing wave. 

Choosing any mean shoreline for which the mean water depth is non-zero affects the 
definition of boundary conditions at the mean shoreline for the mean flow motion. 
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Onshore coordinate, x 
FIGURE 5. Mean longshore velocity in the swash zone for A = 1, A = 0.5 and A = 0.1 (w = 1 for 
all the cases). The seaward limit of the swash zone is given by the intersection of the curves and 
the x-axis. 
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FIGURE 6. Mean longshore mass flux inside and near to the swash zone for A = 1, A = 0.5 and 
A = 0.1 (w = 1 for all the cases). The seaward limit of the swash zone is represented by a x 
symbol. 

Conditions for absorption of water volume and onshore momentum are required. 
Within the swash zone the geometry of the slope affects the averaging methods, 
hence the difficulty in obtaining boundary conditions at the mean shoreline. In the 
next section we show how it is possible to circumvent problems in defining boundary 
conditions at the mean shoreline by obtaining boundary conditions at the seaward 
boundary of the swash zone. 
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FIGURE 7. Mean free surface water level near to the swash zone for A = 1, A = 0.5 and A = 0.1 
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FIGURE 8. Mean water depth ( d )  at the mean shoreline x3. 

4. Integrated flow properties in the swash zone 
When the NLSWE are integrated numerically for the surf and swash zone, it is 

the swash zone that proves to be the most demanding in terms of resolution for 
accurate integration. It would be helpful for many wave-resolving integrations if the 
swash zone were to be replaced by a simplified model. Here we present the direct 
results of integrating across the swash zone, and in the following section investigate 
the accuracy of this simplification. 

In averaging across the swash zone it is not clear what is the best way to proceed, 
since no previous studies have been found. We follow by analogy an approach used 
by Svendsen & Lorenz (1989), Svendsen & Putrevu (1994) and others for dealing 
with the moving free surface in order to average flow properties in the surf zone by 
treating the region above the trough level as a distinct region, that is we investigate 
a model with a boundary chosen at the lower limit of the swash zone. 
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The swash zone limits are x l  , xh, the seaward (lower) and shoreward (higher) limits 
of the swash zone respectively. The seaward boundary may, for example, be the lowest 
limit xl of the moving shoreline in a group of waves. Integral properties of the water 
shoreward of that point are considered. 

We integrate the basic flow equations across the swash zone. In the following we 
adopt Einstein’s summation convention and use Greek suffices for the two-dimensional 
horizontal flow properties. The general set of equations (2.4) is put in conservation 
form : 

d, + (Ud), + = 0, (4 .1~)  

(4.lb) 

(4 .1~)  

(ud), + (24% + f d 2 ) x  + (uvd), + d + 71 = 0, 

(vd ) ,  + (uvd), + (0% + f d 2 ) ,  + 72 = 0, 

+ ( ;v3d + iU2vd + ~ d ~ ) ~  + ~ ( d  + 71) + ~ 7 2  = 0, (4.ld) 

where a dimensionless bed friction z = ( z 1 , ~ 2 )  and the energy equation are included. 
Before integrating the above equations over the swash zone width we make an 

assumption concerning the time scales of the wave motion and of the motion of the 
swash zone boundary. We consider the wave motion as occurring on a ‘fast time 
scale’ t while the swash zone boundaries xh (run-up) and XI (run-down) are supposed 
to vary (if varying in time) on a ‘slow time scale’ T such as t = eT.  (We do not use 
this explicit notation since the separation of the two scales is generally quite clear.) 
We can identify the ‘fast time scale’ t with the typical period of each single incident 
wave. On the other hand the ‘slow time scale’ T might be identified with the typical 
period of modulations of incident short waves. With this definition we can identify 
the short-period motions with the wave motion on the time scale of the single wave 
while long-period motions are all those motions, both waves and currents, occurring 
with a period longer than T .  Initially, in this and the next two sections, we mantain 
a constant value for XI. 

Equations (4.1) are integrated over the swash zone width for constant XI, to give 

f [ d ( U 2  + v 2 )  + d2] * + ( i U 3 d  + f U 2 U d  + 

(4 .2~)  

(4.2b) 

(4.2~) 

(4.2d) 

These equations introduce a number of new flow properties and flow properties 
integrated over the swash zone. These are listed in table 2 where u = (u1,u2) is the 
horizontal velocity vector. 

The set of equations (4.2) for the fully three-dimensional motion can be reduced by 
Ryrie’s approximation to a simpler set of equations valid for weakly three-dimensional 
motion. Second-order terms are neglected after the formal substitution (2.6) is made. 
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Name Explicit expression Flow property 

Q P  uPd Local mass flow 

s,, u,u,d + a,, ; a 2  Local momentum flux tensor 

F 1 2  2u + d  Local energy density 

V sxy d dx Volume of water in swash zone 

PP Jxy QP dx Momentum of water in swash zone 

MPv sxy S,, dx Integrated momentum flux tensor 

E 

YP sxy ZP dx Friction force in swash zone 

r 

sx7 ( $u2d + d 2 )  dx Energy of water in swash zone 

sxy uP7, dx Work done by friction in swash zone 

TABLE 2. Definition of the flow properties adopted in equations (4.2). 

Name Explicit expression Flow property 

P ;u: + d  Local energy density 

E 

l= 

sxy i(u:d + d 2 )  dx 

sx: ulzl dx 

Energy of water in swash zone 

Work done by friction in swash zone 

TABLE 3. Definition of some flow properties adopted in equations (4.3). 

Then, at the leading order the set of equations (4.2) becomes 

(4.3a) 

(4.3b) 

(4.3c) 

(4.3d) 

Table 3 lists definitions which, because of the approximation, differ from those of 
table 2. We distinguish newly defined flow properties by using overbars in equations 
(4.3) and table 2. - 

In the idealized case of no dissipation ( Y i  = Y2 = r = 0),  and no longshore 
variation, the set of partial differential equations (4.3) is such that it can be recursively 
solved for the integral flow properties in the swash zone (i.e. V ,  P I ,  P2 and E )  once 
the local flow properties Q1, S11, S12 and F are known at the seaward boundary of the 
swash zone. The equation for the water volume only depends on the known variable 
Q1. Once this equation is solved for I/ the result can be substituted into the second 
equation and so on. This is illustrated in the next section. If the frictional terms were 
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suitably parametrized similar integration would be possible; however, for this initial 
analysis we consider only the frictionless case. 

In deriving these equations (4.2) and (4.3) it is implicitly assumed that all the 
functions u, v ,  d are continuous solutions satisfying the NLSWE. This is not the 
case if a bore, represented by a discontinuity, is present within the swash zone. This 
presents no problem for the mass and momentum equations, but, as given in (4.2d) 
and (4.34 no account has been taken of energy dissipated by a bore. For a strictly 
periodic swash zone, due to a single-mode wave, this is unimportant since XI may be 
defined as the line on which each successive bore meets the shoreline. As a bore meets 
the shoreline its turbulent dissipation ceases, and only bed friction acts. Ho & Meyer 
(1962) describe this as the collapse of the bore. In unsteady flows bores are likely to 
travel for at least some distance inside the swash zone as we define it here. Although 
this behaviour is illustrated in the next section, it is relatively unimportant since the 
mass and momentum equations are sufficient for all necessary wave modelling. 

5. Time variation of swash zone properties 
In this section we discuss the application of the integrated swash zone equations of 

$4 to some typical test cases. The set of equations (4.3) is used rather than the full set 
(4.2) for three-dimensional motion since we have the analytic solution (2.20) for the 
longshore velocity in the case of weakly three-dimensional motion and it is also much 
easier to compute solutions for these equations. This can also be useful when dealing 
with phase-averaged equations where a model for the short-period wave motion must 
be given. We, thus, analyse in detail the results that can be obtained by the equations 
for weakly three-dimensional motion. 

The main aim of the following discussion is to illustrate and to assess the effective- 
ness of the integral relationships for the analysis of the swash zone motion under as 
general flow conditions as possible. In particular for non-periodic waves each single 
run-down location does not coincide with the chosen seaward limit of the swash zone 
XI. Thus the nominal swash zone may sometimes be noticeably larger than the swash 
of a single wave. Hence a number of examples have been computed, both with the in- 
tegral relations (4.3) used at a fixed XI and with full, numerical, solutions of equations 
(2.7). For the fully numerical solution the onshore and longshore problems are solved 
separately using the methods and numerical schemes given by Watson, Peregrine & 
Toro (1992) for the onshore problem and by Ryrie (1983) for the longshore problem. 

Some features of real swash motion dynamics are introduced by using both uniform 
and modulated signals and including effects of wave breaking by allowing bore-like 
solutions to propagate towards the shore. This is achieved by setting the test input 
as follows. The seaward boundary of the numerical solution is set far enough from 
the bottom of the swash zone that the difference between the full solution and 
the linearized one is negligible. Here the shoreward propagating Riemann invariant 
obtained from the Carrier & Greenspan solution of period TC, i.e. w = 1, is either used 
to generate a uniform train of periodic waves or is modulated with a long sinusoidal 
variation of amplitude A( T )  and period T ( T  = 1071 in our example) in order to give 
wave groups. By increasing the wave amplitude such that Am3 > 1 we generate an 
input that propagates shoreward with bore formation, into a region which is initially 
at rest. Plots of time series for some of the quantities used to describe the swash 
zone dynamics are given in figures 9, 10 and 11. From figures 9 and 10 a comparison 
can be made of the order of magnitude of integral flow properties inside the swash 
zone with and without bore formation. While flow properties essentially depending 
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FIGURE 9. Model results for modulated Carrier & Greenspan type input of offshore amplitude A = 1 
and frequency w = 1. No wave breaking occurs. Time series of volume, momentum and energy. 
Integrated quantities obtained from the numerical solution of the NLSWE. 

on the onshore motion (I/, PI  and E )  are characterized by an increase of about 2 to 
5 times when bores are present in the domain, a much larger increase of over two 
orders of magnitude occurs for the longshore momentum, P2. This can be interpreted 
as evidence of the momentum transfer from waves to longshore currents due to wave 
breaking. The build-up of this larger flow is clearly evident. 

Figure 11 is for a qualitatively different flow pattern from the previous two cases. At 
the seaward boundary uniform-amplitude input waves are incident on a region initially 
at rest. Periodic conditions at the shoreline are reached after an initial transient where 
run-up characteristics differ from those typical of run-up of non-interacting waves. 
There is an interval of time in which three bores are present simultaneously inside the 
swash zone. The space-time diagram in figure 12 helps clarify some details of this case 
where interaction of incoming bores and backwash motions occurs. The first bore 
meeting the still water shoreline does not encounter any resistance from backwash in 
the swash zone, hence its run-up is the largest. Subsequent bores, on the other hand, 
experience resistance from backwash due to previous run-up. In this particular case 
backwash of the first run-up is so strong it prevents the two following incoming bores 
meeting the shoreline. A third strong bore just inside the swash zone (see the arrow 
in figure 12) flows against the last, thin, high-speed portion of backwash which holds 
it at rest. This behaviour occurs while the inital transient conditions settle into a 
periodic solution. Once periodic conditions are reached very little dissipation occurs 
in the swash zone. However, observation, and other computations with random waves, 
show that this type of transient behaviour is not uncommon on a real beach. 

For the two cases of modulated waves, breaking does not occur for the initial 
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FIGURE 10. Model results for modulated Carrier & Greenspan type input of offshore amplitude 
A = 5 and frequency w = 1. Wave breaking occurs. Time series of volume, momentum and energy. 
Integrated quantities obtained from the numerical solution of the NLSWE. 

smaller waves which hence contribute little to the longshore momentum, but larger 
waves undergoing full breaking greatly augment longshore momentum. It is also 
clear that when waves do not break effects of modulation are more evident for the 
longshore momentum P2 than for the onshore momentum PI and energy E .  In fact 
modulation gives a slowly varying average to the signal of Pz whereas for the others 
modulation is only present as time variation of the signal amplitude but the mean of 
the signal itself does not vary noticeably in time. On the other hand time modulation 
of the mean characterizes both E and P2 once wave breaking occurs. 

When one or more bores are in the swash zone, as defined by x > XI, then the energy 
equation (4.34 is expected to be in error. This is found to be the case when these 
equations are assessed numerically. Equations (4.3~-c) are found to be satisfactory 
within the anticipated numerical errors (the volume of water involved is often very 
small) for a wide range of flows, but as illustrated in figure 13 equation (4.34 is of 
more limited value. The discrepancy between the actual rate of change of energy, the 
left-hand side of equation (4.3d) and the right-hand side of (4.34 is shown in figure 
13 together with a space-time diagram showing when bores are within x > x I .  This 
discrepancy is clearly associated with the time between a bore passing x = XI and the 
bore meeting the instantaneous shoreline. 

The integrated swash zone equations (4.2~-c) and (4.3~-c) provide boundary con- 
ditions at x = XI for the waves in most of the surf zone. This should be of value for 
numerical integration, unless details of swash zone behaviour are required. When the 
full swash zone is included in a computation it not only involves a larger domain 
of integration with a special boundary condition at the shoreline, but also frequently 
determines the maximum permitted time-step. Hence, these integral representations 
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FIGURE 11. Model results for periodic Carrier & Greenspan type input of offshore amplitude A = 8 
and frequency w = 4 starting from rest. Wave breaking occurs. Time series of volume, momentum 
and energy. Integrated quantities obtained from the numerical solution of the NLSWE. 
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FIGURE 12. Model results for a periodic Carrier & Greenspan type input of offshore amplitude 
A = 8 and frequency o = 4 starting from rest. Wave breaking occurs. Characteristic curves, bore 
paths and shoreline are shown in the (x,t)-plane. The bore paths are represented by dotted lines, 
the broken line represents the seaward limit of the swash zone. 
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FIGURE 13. Model results for part of a modulated Carrier & Greenspan type input of offshore 
amplitude A = 5 and frequency w = 1. Wave breaking occurs. (a) Time series of the left-hand 
side (solid line) and right-hand side (thick dotted line) of equation (4.34 as evaluated from a full 
numerical solution. ( b )  Characteristic curves, bore paths and shoreline in the (x, t)-plane. The bore 
paths are represented by thick dotted lines, the broken line represents the seaward limit of the 
swash zone. 

may be useful, as well as representing one step towards the wave-averaged equations 
discussed in $7 and $8. 

One limitation in the equations (4.2) and (4.3) is the omission of friction terms. These 
are deliberately omitted here so we are able to present results with no approximations 
beyond the NLSWE. If account is taken of friction, terms appear in the momentum 
and energy equations for which further closure approximations must be made. Such 
approximations are to be the subject of further study. 

6. Swash flow from properties at xl 
To estimate swash zone flow properties from the integrated model we use simple 

geometric arguments based on water volume conservation to consider the inverse 
problem and estimate the moving shoreline. That is if Q, M etc. are known can we 
predict swash zone properties? The simplest approach assumes that the bulk of water 
running up and down in the swash zone is in the form of a triangular wedge. Both 
the base and the area of the triangle are known, being respectively the water depth 
d at the seaward limit of the swash zone and the total water volume I/ obtained 
from equations (4.3). The moving shoreline and other flow properites can therefore 
be estimated. 

In figure 14 time series for both computed (thin line) and estimated (thick line) 
shorelines are shown for the modulated Carrier & Greenspan input signal of amplitude 
A = 1 and A = 5. 

It is evident that while a satisfactory result is achieved in estimating the shoreline 
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FIGURE 14. Computed and estimated shoreline for the modulated Carrier & Greenspan input signal 
of amplitude (a) A = 1 and ( b )  A = 5. Wave breaking occurs for the second case. Computed 
shorelines are drawn with a thin line while the estimate ones are given by a thick line. 

when there is no breaking (case A = 1) this is not true when breaking is present 
(case A = 5 )  since the estimated shoreline underestimates the computed one. This is 
largely due to the different nature of shoreline motion when caused by a bore. As 
shown by Shen & Meyer (1963) the tip of the run-up due to a bore differs from that 
due to a smooth wave and has a quadratic variation of depth with distance from 
the instantaneous shoreline. This means that extremely thin sheets of water occur. 
Inclusion of any extra physical effect, such as bed friction, roughness, or surface 
tension can also lead to large differences in run-up position. Packwood (1980) has 
an example, here reproduced in figure 15, where comparison with a run-up meter 
illustrates this well. The computed shoreline is generally far from the measured 
shoreline. However the run-up gauge was insensitive to water depths of less than 2 
mm, and reasonably good agreement is found for the 2 mm depth contour, for both 
inviscid computations and those including bed friction. 

In similar fashion we also use the onshore momentum inside the swash zone ( P I )  
to estimate onshore velocity. The onshore velocity inside the swash zone is assumed 
to vary linearly from the boundary XI to the estimated waterline. Computation has 
been performed for two modulated trains of amplitude A = 1 and A = 5. Comparison 
of the time series for PI reveals that no appreciable difference is found between the 
computed and estimated momentum when no wave-breaking occurs ( A  = 1 case). On 
the other hand some discrepancies appear when analysing the A = 5 case. They are 
more marked in the proximity of the extremal points (maxima and minima) of the 
time series. The largest discrepancy is detected near the maximum occurring at t = 14 
(see figure 10) where the onshore momentum obtained from the numerical solution 
of the NLSWE is about 0.06. Here the percentage discrepancy is about 13%. 

To illustrate the behaviour of the estimated (linear extrapolation) and computed 
onshore momentum inside the swash zone in more detail we compare the estimated 
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FIGURE 15. Comparison of computed and experimental run-up data from Packwood (1980) with 
permission of the author. Shoreline and 2 mm contours are shown for the computed solution. The 
experimental data (Hedges & Hawkes, private communication) from a run-up meter which was 
triggered by 2 mm water depth is drawn with a solid line, the data from the inviscid computed 
solution with a dashed line and the data from the computed solution including Chezy-type friction 
with a dotted line. 

(dotted line) and computed (solid line) onshore velocity and water depth in the swash 
zone (see figure 16) at the time t = 14 when the largest discrepancy occurs. The 
largest errors in the estimated onshore velocity occur near the tip of the run-up, i.e. 
where the water depth becomes very small. The longshore velocity inside the swash 
zone can be suitably modelled by means of a linear profile which decreases from 
the breaking point to the shoreline. Ryrie (1983) reports results of computations 
which include friction and examples of linearly decreasing envelopes of maximum 
and minimum values of v across the entire surf zone are given. This and consideration 
of the difficulties in assessing and measuring water flow properties very close to the 
waterline suggest that computing flow properties by mean of the simplified model 
can give a reasonable estimate for most of the swash zone. 

7. The swash zone boundary conditions for wave-averaged models 
A natural extension to averaging the swash zone is to seek appropriate boundary 

conditions at the seaward swash zone limit for wave-averaged models of the incident 
motions (both long- and short-period motions). This requires definition of the con- 
tributions to the motion of the boundary x = XI from both long-period motions (e.g. 
low-frequency waves, currents, etc.) and averaged short-period motions. The problem 
here is that there is no definitive model for the waves approaching the swash zone, 
especially for the most usual case where waves are already breaking. The following 
discussion develops swash zone boundary conditions by assuming that appropriate 
short-wave properties are known. A brief illustration of some of these properties is 
given in the following section; however the main aim is to provide the foundation 
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Onshore distance 
FIGURE 16. Computed (solid line) and estimated (dotted line) flow properties inside the swash zone 
for the modulated Carrier & Greenspan input signal of amplitude A = 5.  The increasing curves 
represent the onshore velocity while the decreasing ones represent the water depth. (Note that the 
kink close to the shoreline is a computational artefact.) 

from which further work may be developed, both in approximating the equations 
derived here and in improving the description of waves in the surf zone. 

To obtain dynamic equations for wave-averaged flow properites we start with the 
equations of motion and divide the basic flow properties u, u and d into long-period 
motions and the short-period wave contributions : 

(7.1) 

Contributions to (u),  (v) and (d)  come from all motions whose typical time scale 
is significantly longer than the typical short-wave period. These can be for example 
either bound long waves associated with the set-down occurring under a group of 
short-period waves (Longuet-Higgins & Stewart 1964) or free long waves caused 
by a time-varying breakpoint (Symonds, Huntley & Bowen 1982) or any sort of 
current. On the other hand pure short-period contributions appear as correlations of 
wave-type terms (e.g. (iiZi), ( i i ~ ) ,  etc.). 

By substituting in the shallow water equations (4.1) in this way for each flow 
variable and by phase averaging we obtain a set of equations for the long-period flow 
properties (u )  , (0) and ( d ) :  

u = (u )  + ii , u = (u) + 5 , d = (d )  + Zi , (5) = (5) = (Zi) = 0. 
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where (Qp)  = (i$) is the mass flow due to wave motion while the contribution of the 
momentum flux due to wave motion is given by the the radiation stress term (spy) .  

This set of equations is not ‘closed’ unless a particular wave theory for the short- 
period wave field is adopted to compute terms like the mass flow and the radiation 
stress. For instance, it is common practice to use linear wave theory while dissipation 
effects induced by wave breaking are parameterized in the solution. 

The breaking process is usually described in terms of simple properties and easy to 
compute parameters (Arcilla & Lemos 1990). For example a wave-breaking parameter 
such as the parameter B (see (3.13)) is adopted to prescribe initiation of breaking while 
another parameter D is introduced in order to model the wave energy dissipation and 
the related wave amplitude (height) decay. Many different models for the computation 
of the D-parameter are available; see for example Battjes & Janssen (1978) and 
Thornton & Guza (1983). A full review on this subject can be found in Battjes (1988). 

Linear wave theory is not a good representation for the wave field near the shore. 
The Carrier & Greenspan (1958) solutions and their extension described above can 
be more appropriate. However, these solutions highlight an important property of the 
swash zone: incident waves may be reflected, partially reflected or fully absorbed. The 
Carrier & Greenspan solution corresponds to perfect reflection. In most studies with 
wave breaking the short waves are assumed to be fully absorbed, with any reflection 
being in the form of long, low-frequency waves. 

To help crystallize ideas we note that one approach to this problem would be to 
extend the Carrier & Greenspan solution to Ao3 > 1 by computing the surf and 
swash zone behaviour for waves which have incoming Riemann invariants as for the 
Carrier & Greenspan solution with A o 3  > 1. The reflection, mass flow, radiation 
stress and the averaged swash zone properties, I/, P and E could be tabulated as 
functions of A and cr). We assume that if a suitable model is found for the short-wave 
motion this can be described in terms of only an amplitude A and a frequency o 
once the mean depth and mean flow velocity are given. 

The types of equations that arise are perhaps seen most clearly in Hayes’ (1973) 
extension of Whitham’s approach. For sufficiently shallow water, the set of equations 
for unidirectional propagation is hyperbolic, and includes equations corresponding 
to (7.2a,b) for the mean flow, and two further equations for the wave propagation. 
Two characteristics of this set are the familiar pair for the shallow water equations; 
the other two, for the short waves, correspond to a splitting of the usual linear ray 
equation. That is, finite-amplitude effects split the rays into two characteristics, see 
Peregrine (1983) for another example of this. Both of these short-wave characteristics 
have velocities corresponding to a generalized group velocity plus the effects of 
varying depth and current due to larger scale motions. In the subsequent discussion 
we assume these to be known incident quantities in x < XI. 

Before discussing boundary conditions at the lower boundary of the swash zone, 
x = xr(y, t )  we present a simpler example of a moving boundary, that is a rigid 
wall moving at velocity U ( t ) i  which varies on a sufficiently slow time scale that its 
acceleration is unimportant. 

The long-period motion has the known incoming Riemann variable 

a = 2(c> + (u) (7.3) 

and for an impermeable boundary the boundary condition is (u )  = U(t) .  Thus the 
outgoing Riemann variable becomes 

(7.4) p = 2(c) - (u) = a - 2u.  
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The incoming waves of amplitude Ain, wavenumber kin and frequency win are perfectly 
reflected at the wall, but to determine the outgoing values of A, k and u) the local 
behaviour at the moving wall must be considered. 

In a frame of reference moving with the wall, the waves have an unchanging 
intrinsic frequency cr which is readily found from the Doppler shift: 

win = cr + Ui kin. (7.5) 

The waves are perfectly reflected so that the outward propagating wave has A,,, = Ain 
and k,,, = -(kin * i)i + (kin j ) j  giving 

a,,, = CT + Ui k,,, = cr - Ui kin = win - 2Ui kin. (7.6) 

In comparing the moving swash zone boundary with the above simple boundary, 
we note: 

(i) sufficient information must be available to determine the motion of the swash 
zone boundary, xl(t), as well as to determine p ;  

(ii) as above, a local wave model is needed to determine the properties of the 
outgoing wave, if any. 

We concentrate on the first of these, and look at integration of swash zone equations 
similar to (4.2), or (4.3), to provide the necessary information. The integrated systems 
(4.2) and (4.3) are implicitly expressed in terms of the short-wave motions. There is 
now an important choice to be made: how much of the swash motion, if any, should 
be assigned to the long time scales? Consideration of the moving rigid wall example 
leads us to consider all motion relative to the point x = xl(y,t) to be short-wave 
motion and xl(y, t )  to be ‘driven’ by the long-period motions. As a result, we consider 
all the quantities defined in tables 2 and 3 to be defined with velocities relative to X I  

and also to be considered as known once incident short-wave parameters Ain, kin and 
(T are known. That is quantities such as the mean volume of water in the swash zone, 
( V ) ,  are supposed to be known once the incoming short waves at x = xl are known. 

Inside the swash zone most of the short-wave quantities, such as V ,  PI, are also 
averaged over the short-wave motion and denoted by ( V ) ,  ( P )  etc. and are to be 
determined from a short-wave model of the swash. There are exceptions for the 
longshore current quantities P2, Mp2 which are not entirely dependent on the local 
waves. When a bore, or flow which was near a bore, enters the swash zone it makes 
a large contribution to the longshore velocity, which often may only respond to bed 
friction on the longer time scale, e.g. see Ryrie (1983). This means that a decomposition 
of long-wave and short-wave contributions is also necessary within the swash zone. 

We achieve this decomposition by assuming that swash motion is almost entirely 
assigned to short-wave contributions and that the only long-wave contribution comes 
from parameterizing the longshore drift due to wave breaking by a longshore current 
velocity W = W(y,t).  In similar fashion to equation (7.1), which applies outside 
the swash zone, we separate short-wave from long-wave contribution for the flow 
properties inside the swash zone: 

h 

d = d ,  8x1 u = - + a  
at ’ v = w + o ,  (7.7~-c) 

where a short-wave property inside the swash zone is defined as & rather than which 
pertains to short-wave contributions outside the swash zone. This decomposition 
permits the integrated terms depending on the longshore velocity to be divided 
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between long and short waves: 

(P2) = ( W P )  + (P2) 3 

0 4 1 2 )  = (W&) + (fi-112) + 2 ( (WP)  + (P2)) 3 

(M22) = (W2P) + 2(W32) + ( f i 2 2 ) .  

(7 .8~)  

(7.8b) 

(7.8~) 

All the integral properties which are to be considered as short-wave terms have 
a hat symbol. Using a different basis for short-wave and averaged quantities in the 
swash zone compared with those outside the swash zone may at first seem wayward. 
However, the character of swash motion is different: on many sandy beaches there is 
also a strong difference in the character of the bed in the swash zone compared with 
the bed just outside the swash zone. 

In order to avoid greater complexity, the longshore variation of XI has been assumed 
to be negligible in the above derivation. This is essentially a geometrical matter, and 
the above boundary conditions can be interpretated as being applicable when the 
x-direction is normal to the mean lowest boundary of the swash. 

To obtain explicit expression of the first boundary condition we consider the flow 
of mass into the swash zone relative to x = xi. The average of equation (4.2~)  is 

where now the right-hand side contains the relative flow velocity (u - axl/at). The 
left-hand side is also rewritten in terms of the local variables inside the swash zone. 
After using (7 .8~)  for (P2), integration across the swash zone width and averaging 
over the short waves we obtain 

a(P) a ( w P )  a(P2) = ( ( u  - 2) d )  = (u ) (d )  + (d) - =(d)  3x1 . (7.10) -+-+- 
at a Y  dY 

The first term on the left-hand side of this equation is the rate of change of the total 
volume of water in the swash zone; the second and third terms are the change in 
volume due to the lateral variation of longshore currents respectively associated yith 
the longshore velocity inside the swash zone W and with the wave contribution (P2). 
The right-hand side of (7.10) is the increase of water in the swash zone through its 
lower boundary; it is evaluated at x = XI using outer variables. 

A similar derivation for the average balance of onshore momentum in the swash 
zone gives 

] +g.(P) + (TI) = ( ( u -  $ ) 2 d +  'pd') 

= ( ( u )  - 2)2 (d)  + ;g(d)2 + 2(a2) (24) - - + (62)(d) + (n22) + ig(22). ( 2)  
(7.11) 

In this equation dimensional expressions have been inserted to clarify the origin 
of terms. The first two terms on the left-hand side are the rate of change of the 
mean momentum in the swash zone. The group of terms with y-derivatives are 
the contribution from longshore velocity gradients which include both long-period 
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contributions (terms with W )  and short-period contributions (terms with (P2) and 
(f i-112)).  The following terms are the action of gravity and friction on the water in 
the swash zone. The right-hand side is the momentum transfer into the swash zone 
at x = xl where the mean flow velocity relative to the swash zone limit appears in 
both long- and short-period terms. Finally pure short-period contributions appear. 
Conservation of longshore momentum similarly yields 

= ( ( u - ! $ ) v d )  

= ( ( u )  - 2) ( v ) ( d )  + ( f i 6 ) ( d )  + ( d ) ( v )  + (62) (u )  - - + ( a d ) .  (7.12) ( 2 )  
The above three equations are boundary conditions for the long-wave motion and 

x/ if the short-wave properties on each side of x = XI have ‘known’ models. Whereas in 
the rigid wall model only the boundary condition (u) = U ( t )  is required, now we also 
need to evaluate the changes in XI and W .  In addition, the short-wave models may 
be chosen to permit the reflection of short waves. Note, the short-wave swash model 
must be used relative to x = XI, hence the motion of xi is seen as the long-period 
contribution to the swash zone. 

A delicate matter concerning the different wave models needed on each side of 
XI also needs attention. There is no reason to suppose that W and ( v )  evaluated at 
x = x/ should be equal; in fact they can be expected to differ since W describes a 
mean velocity of the swash zone. Thus when the average volume of water in the swash 
zone is diminishing, the right-hand side of equation (7.12) corresponds to longshore 
momentum leaving the swash zone and it seems to us that the terms with ( v )  would 
be better if (v) were replaced with W when d(?)/dt is negative. We consider that this 
aspect of the boundary conditions needs further consideration which is best carried 
out in conjunction with further studies using particular models of the short-wave 
motions. 

8. The short-wave contribution 
In this section we briefly analyse the relevance of the short-wave contributions 

with particular emphasis on those appearing in the equations (7.10), (7.11) and (7.12) 
which are used to define the boundary conditions at the lower limit of the swash zone. 
Computation of the contributions has been performed by integrating the analytical 
solution for A o 3  < 1 and by integrating the fully numerical solution when wave 
breaking occurs, i.e. for A o 3  > 1. 

Figure 17 shows the variation with the wave amplitude of the most relevant 
short-wave contributions when no wave breaking occurs, i.e. for A o 3  < 1. Those 
terms which are not shown since they are smaller than are (ad), @a), (GO), 
(GO&, (PI) and (i?l2). The largest term is (2’) while (a2)  and (a2& are one or- 
der of magnitude smaller. The three integral flow properties shown in figure 17 
are monotonic increasing functions of the wave amplitude. Note that curves in 
figures 17 to 19 have been obtained by joining discrete points which represent the 
results of single computations. This explains the lack of smoothness in some of 
the curves. 
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FIGURE 17. Short-wave contribution at the boundary xI and inside the swash zone for wave frequency 
w = 1 and for no-wave-breaking conditions. From top left to bottom right they are the short-wave 
averages (a) (C2), (b)  (a2),  ( c )  (6’2) and the integral properties ( d )  (p), (e) (&, (f) (&). 

For waves that break, momentum and energy are transferred from the short 
waves to the longshore currents; different terms need to be taken into account as 
major contributions to equations (7.10), (7.11) and (7.12), see figure 19. A first evident 
difference between the non-breaking and the breaking case is related to the swash zone 
width x h  - xi. The non-breaking solution predicts a linearly monotonic increasing 
swash zone width with respect to both wave amplitude and wave frequency (see 
(3.3)): 

On the other hand for periodic wave-breaking solutions there appears to be an 
asymptotic size for the swash zone width, ŝee figure 18. This may account for the 
reduced rate of increase in mean volume ( V )  inside the swash zone with respect to 
that typical of the non-breaking waves (see figures 17d and 19(c)). We have yet to 
investigate the interesting maximum of (a2) near Am3 = 3. 

A more substantial difference arises in the longshore motion, for which the ap- 
proximate equation (2.7~) is used to give a solution for the averaging. The input of 
longshore momentum from the bores is balanced by bed friction but generally on the 
longer time scale. Although bores die out when they meet the shoreline and cause 
run-up, the water that forms the swash has acquired longshore momentum from the 
bore before it enters the swash zone. A fully detailed consideration of this case also 
awaits further study; here we present the rate of change in time of the quantities (P2), 

Xh - XI = ;Am. (8.1) 

0 4 1 2 )  and (M22). 
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FIGURE 19. Short-wave contribution at the boundary xl and inside the swash zone for wave frequency 
w = 1. From top left to bottom right they are the short-wave correlations (a) (il*), ( b )  ($) the 
integral properties (c) (p), and the rate of change of the three global integral properties ( d )  (Pz) ,  (e) 
( M l J  and (f) (M22). Note that for A < 1 numerical integration of the analytical solution is shown 
while for A > 1 fully numerical solution of the NLSWE is represented. 
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The figures presented here indicate that not all the terms that are introduced into 
the boundary conditions (7.10), (7.1 1) and (7.12) are necessary. Further investigation 
should help to clarify both which are the most significant terms when considered in 
the context of the equations and what are the effects of friction terms. 

9. Conclusions 
This paper is an initial study of flow properties in the swash zone using the non- 

linear shallow water equations, it ranges from explicit detailed solutions to averaged 
equations. 

A weakly three-dimensional extension of the two-dimensional solution by Carrier 
& Greenspan (1958) of the nonlinear shallow water equations for waves sloshing 
on an inclined plane beach is developed and used to illustrate the further ideas. 
The solution represents standing wave modes generated by perfect reflection at the 
shore of the incoming waves. However this particular solution can only be used 
until breaking conditions, i.e. a vertical wave front, are reached. For larger values 
of the wave amplitude solutions with bores are modelled by numerically solving the 
nonlinear shallow water equations. 

There is not a unique definition of the mean shoreline. On the contrary some 
different definitions are analysed and discussed with explicit computation for each 
definition based on the analytic Carrier & Greenspan (1958) solution, e.g. the mean 
water depth is different at each position. 

Flow properties in the swash zone are similar to those in the region between 
trough and crest for freely propagating surface waves. In particular the Stokes’ drift 
of water waves has its counterpart in the swash zone as a longshore drift. Such a 
flow associated with the swash zone is essentially a mass flux, which in averaging 
needs to be associated with the chosen shoreline position or boundary for the swash 
zone. In fact we have found it most convenient to take the lower boundary of the 
swash zone as the line that bounds the sea. By integrating across the swash zone 
a simplified swash zone model is found. It shows promise for use in wave-resolving 
numerical models, since it captures most of swash zone features and if required can 
give a reasonable spatial model of the flow. 

A study of averaging of the swash zone to provide boundary conditions for 
wave-averaged models is given. It is intended to lay the foundations for further, 
more practical development, by indicating the basic equations obtained from such 
averaging. Instead of the single boundary condition needed at a simple boundary 
two further conditions are found in order to determine the motion of swash zone 
boundary and the mean longshore flow in the swash zone. The short-wave mo- 
tions are assumed to come from ‘known’ models. The determination of suitable 
short-wave models for surf and swash zones is a subject for further study, but an 
indication of the way forward is given by evaluating swash zone properties for 
the extended Carrier & Greenspan solution and its numerical extension to include 
bores. 

This work was supported by the European Community, Directorate Generale 
XI1 under the two contracts: Human Capital and Mobility ERBCHBICT930678 and 
MAS2-CT92-0047. We wish to thank Dr Gary Watson for many useful conversations, 
and the referees for their contribution to improving the clarity of our presentation. 
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